TEAM
RESEARCH
PUBLICATIONS
COLLABORATORS
CONTACT
More
Lin et al., 2021 MRI-guided histology of TDP-43 knock-in mice implicates parvalbumin interneuron loss, impaired neurogenesis and aberrant neurodevelopment in amyotrophic lateral sclerosis-frontotemporal dementia. Brain Communications. DOI: 10.1093/braincomms/fcab114
White et al., 2019. Sarm1 deletion suppresses TDP-43-linked motor neuron degeneration and cortical spine loss. Acta Neuropatholica Communications. DOI: 10.1186/s40478-019-0800-9
White et al., 2018. TDP-43 gains function due to perturbed autoregulation in a Tardbp knock-in mouse model of ALS-FTD. Nature Neuroscience. DOI: 10.1038/s41593-018-0113-5
Sreedharan et al., 2015. Age-Dependent TDP-43-Mediated Motor Neuron Degeneration Requires GSK3, hat-trick, and xmas-2. Current Biology. DOI: 10.1016/j.cub.2015.06.045
Vance et al., 2009. Mutations in FUS, an RNA processing protein, cause familial amyotrophic lateral sclerosis type 6. Science. DOI: 10.1126/science.1165942
Sreedharan et al., 2008. TDP-43 mutations in familial and sporadic amyotrophic lateral sclerosis. Science. DOI: 10.1126/science.1154584
Kim et al., 2020. Coexistence of perseveration and apathy in the TDP-43Q331K knock-in mouse model of ALS–FTD. Translational psychiatry. DOI: 10.1038/s41398-020-01078-9
Watkins et al., 2020. Female sex mitigates motor and behavioural phenotypes in TDP-43Q331K knock-in mice. Scientific Reports. DOI: 10.1038/s41598-020-76070-w
Mayl et al., 2020. Blowing Hot and Cold in ALS: The Duality of TBK1. Neuron. DOI: 10.1016/j.neuron.2020.05.006
Weskamp et al., 2020. Shortened TDP43 isoforms upregulated by neuronal hyperactivity drive TDP43 pathology in ALS. Journal of Clinical Investigation. DOI: 10.1172/JCI130988
Hill et al., 2020. Loss of highwire Protects Against the Deleterious Effects of Traumatic Brain Injury in Drosophila Melanogaster. J.Frontiers in Neurology. DOI: 10.3389/fneur.2020.00401
Woldegebriel et al., 2020. Distinct effects on mRNA export factor GANP underlie neurological disease phenotypes and alter gene expression depending on intron content. Human Molecular Genetics. DOI: 10.1093/hmg/ddaa051
Khalaf et al., 2019. Relative preservation of triceps over biceps strength in upper-limb onset ALS: The ‘split elbow’. Journal of Neurology, Neurosurgery & Psychiatry. DOI: 10.1136/jnnp-2018-319894
Gowland et al., 2019. Predicting the future of ALS: the impact of demographic change and potential new treatments on the prevalence of ALS in the United Kingdom, 2020–2116. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration. DOI: 10.1080/21678421.2019.1587629
Tripathi et al., 2019. POD09 Using the chick embryo model system to study the neurotoxicity of TDP43. Journal of Neurology, Neurosurgery and Psychiatry. DOI: 10.1136/jnnp.2010.226340.109
Gkazi et al., 2019. Striking phenotypic variation in a family with the P506S UBQLN2 mutation including amyotrophic lateral sclerosis, spastic paraplegia and frontotemporal dementia. Neurobiology of Aging. DOI: 10.1016/j.neurobiolaging.2018.08.015
White et al., 2016. Amyotrophic lateral sclerosis: recent genetic highlights. Current Opinion in Neurology. DOI: 10.1097/WCO.0000000000000367
Mitchel et al., 2013. Overexpression of human wild-type FUS causes progressive motor neuron degeneration in an age- and dose-dependent fashion. Acta Neuropathologica. DOI: 10.1007/s00401-012-1043-z
Sreedharan et al., 2010. Neuronal Death in Amyotrophic Lateral Sclerosis (ALS): What Can We Learn from Genetics?. Cns & Neurological Disorders-Drug Targets. DOI: 10.2174/187152710791292558
Rutherford et al., 2008. Novel mutations in TARDBP (TDP-43) in patients with familial amyotrophic lateral sclerosis. PL o S Genetics. DOI: 10.1371/journal.pgen.1000193
Vance et al., 2006. Familial amyotrophic lateral sclerosis with frontotemporal dementia is linked to a locus on chromosome 9p13.2-21.3. Brain. DOI: 10.1093/brain/awl030